

Tetrahedron Letters Vol. 46, No. 47, 2005

Contents

COMMUNICATIONS

Selective deacetylation using iodine-methanol reagent in fully acetylated nucleosides Bo Ren, Li Cai, Liang-Ren Zhang, Zhen-Jun Yang and Li-He Zhang* pp 8083-8086

Combined dealkoxycarbonylation and lactonisation of unsaturated malonates in ionic liquids Magalie F. Oswald, Andrew F. Parsons,* Wei Yang and Martin Bowden

pp 8087-8089

Generation and detection of tellurane [10-Te-4(C4)] and selenurane [10-Se-4(C4)] having alkyl and aryl ligands

pp 8091-8093

Soichi Sato,* Makoto Matsuo, Tsukasa Nakahodo, Naomichi Furukawa and Tatsuya Nabeshima*

Asymmetric dihydroxylation of disubstituted allenes

Steven A. Fleming,* Renmao Liu and J. Ty Redd

pp 8095-8098

Synthesis of D-D4FC, a biologically active nucleoside via an unprecedented palladium mediated Ferrier rearrangement-type glycosidation with an aromatization prone xylo-furanoid glycal

Anusuya Choudhury,* Michael E. Pierce,* Dieu Nguyen, Louis Storace and Pat N. Confalone

pp 8099-8102

A concise synthesis of denbinobin

Yu-Chieh Wang, Chien-Huang Lin, Chi-Ming Chen* and Jing-Ping Liou*

pp 8103-8104

Starting from commercially available 3,5-dimethoxybenzyl bromide (6) and 2-bromoisovanillin (5), a synthesis of denbinobin (1) was achieved in seven steps. The free radical cyclization and Fremy's salt oxidation were key steps.

Silica gel-promoted synthesis of 3,4,5-triaryltetrahydro-1,4-thiazine derivatives from β,β' -dichloro sulfides and aromatic amines

pp 8105-8108

Masatoshi Mihara, Takatoshi Ito, Yoshio Ishino,* Yoji Oderaotoshi, Satoshi Minakata and Mitsuo Komatsu*

Stereoselective synthesis of (8R,8aS)-8-methylhexahydroindolizin-5-one

pp 8109-8111

Paul Armstrong, Gavin O'Mahony, Paul J. Stevenson* and Andrew D. Walker

Both catalytic and diimide reduction of dihydroindolizidinone proceed preferentially from the *endo*-face giving rapid entry to the title compound.

Fast and selective oxidation of thioglycosides to glycosyl sulfoxides using KF/m-CPBA

pp 8113-8116

Geetanjali Agnihotri and Anup Kumar Misra*

An amide orthoesterification route to N-(1'-alkylthioglucopyranosyl)indoles

pp 8117-8120

Tahar Belhadj and Peter G. Goekjian*

N-tert-Butyl-N-chlorocyanamide: a new reagent for the efficient preparation of gem-chloronitroso compounds

pp 8121-8123

Vinod Kumar and M. P. Kaushik*

Baylis-Hillman reactions in aqueous acidic media

pp 8125-8127

Prakashanand Caumul and Helen C. Hailes*

The Baylis-Hillman reaction has been successfully carried out in water at pH 1 using a range of tertiary amines.

Synthesis of isotetronic acids by cyclization of 1,3-bis(trimethylsilyloxy)alk-1-enes with oxalyl chloride pp 8129–8131 Rüdiger Dede, Lars Michaelis and Peter Langer*

Importance of steric factors in face-selective cycloadditions: 1,6-annulated cyclohexa-1,3-dienes Saswati Lahiri,* Somnath Yadav, Mithu Chanda, Indrajit Chakraborty, Krishna Chowdhury, Monika Mukherjee,* Angshuman Roy Choudhury and Tayur N. Guru Row*

pp 8133-8136

$$H_{a}$$
 $H_{a'}$
 $H_$

Carbonylative lactonization via carbonyl oxygen attack: a short and selective total synthesis of uncinine and its analogues

pp 8137-8140

Helena Fáková, Milan Pour,* Jiří Kuneš and Petr Šenel

An efficient synthesis of conjugated nitro-olefins using ceric ammonium nitrate

pp 8141-8143

A. Sridhar Rao, P. V. Srinivas, K. Suresh Babu and J. Madhusudana Rao*

Synthesis of *P*-chirogenic diarylphosphinoacetic acids and their proline derivatives for palladium-catalysed allylic alkylation reactions

pp 8145-8148

Hubert Lam, Peter N. Horton, Michael B. Hursthouse, David J. Aldous and King Kuok (Mimi) Hii*

The synthesis of *P*-chirogenic diarylphosphinocarboxylic acids was achieved, from which a new class of amido- and amino-diphosphine ligands (PNP*) were derived, containing an L-proline backbone. The catalytic activities of the novel ligands were evaluated in the palladium-catalysed allylic alkylation reaction of 1,3-diphenylpropenyl acetate.

(i)+

Palladium-mediated transannular cyclizations of medium-ring olefinic enolsilanes

pp 8149-8152

Andrew S. Kende,* Clara E. Mota Nelson and Sébastien Fuchs

Medium-ring olefinic ketone and lactone enolsilanes were subjected to palladium(II)-mediated cycloalkenylation conditions.

Linear C_2 -symmetric polycyclic benzodithiophene: efficient, highly diversified approaches and the optical properties

pp 8153-8157

Cui-Hua Wang, Rong-Rong Hu, Shuang Liang, Jia-Hua Chen, Zhen Yang* and Jian Pei*

Practical synthesis of (2S,3R)-3-hydroxy-3-methylproline, a constituent of papuamides, using a diastereoselective tandem Michael-aldol reaction

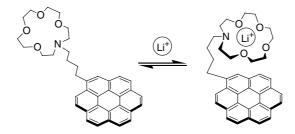
pp 8159-8162

Kazuishi Makino, Eri Nagata and Yasumasa Hamada*

HO HO HO HO HO HO
$$O=S=0$$
 O $O=S=0$ $O=S=0$

Calix[4]crown in dual sensing functions with FRET

pp 8163-8167


Seoung Ho Lee, Sung Kuk Kim, Ju Han Bok, Suh Hyun Lee, Juyoung Yoon, Kilsung Lee and Jong Seung Kim*

$Li^+ \cdots \pi$ interaction in coronene–azacrown ether system

pp 8169-8172

Hiroyuki Takemura* and Katsuya Sako

An efficient catalyst- and base-free Suzuki-type coupling reaction

Jie Yan,* Zhongshi Zhou and Min Zhu

pp 8173-8175

$$Ph_4BNa + Ar-I \xrightarrow{X} \frac{H_2O}{R.T.} \rightarrow Ph-Ar$$

Synthesis of fused heterocycles with a benzazepinone moiety via intramolecular Heck coupling

pp 8177-8179

Lionel Joucla, Aurélien Putey and Benoît Joseph*

The preparation of fused heterocycles with a benzazepinone moiety was realised via an intramolecular Heck coupling reaction. This methodology allowed the synthesis of the pyrrolo[2,3-c]azepinone core and Paullone derivatives.

Oligothiophene phosphoramidites for oligonucleotide labelling

pp 8181-8184

Massimo L. Capobianco,* Marina Naldi, Massimo Zambianchi and Giovanna Barbarella

Direct asymmetric aldol reaction in aqueous media using polymer-supported peptide

pp 8185-8187

Kengo Akagawa, Seiji Sakamoto and Kazuaki Kudo*

O H H O
$$20 \text{ mol}\% D\text{-Pro-Tyr-Phe}$$
 O OH $20 \text{ mol}\% ZnCl_2$ O OH $4 \text{ M} + 100 \text{ mol}\% ZnCl_2$ O OH $4 \text{ Mol}\% Z$

A facile preparation of N-protected indolaldehydes using a modified Hass procedure

pp 8189-8193

Arasambattu K. Mohanakrishnan,* Ramalingam Balamurugan and Neelamegam Ramesh

A convenient synthesis of biphenylene

Thomas Schaub and Udo Radius*

pp 8195-8197

An efficient one-pot reaction for the synthesis of biphenylene 1 starting from biphenyl is reported.

Stereoselective synthesis of ent-communiols A-C

Juan Murga,* Eva Falomir, Miguel Carda and J. Alberto Marco

pp 8199-8202

The first total synthesis of the enantiomers of the fungal metabolites communiols A–C is reported. A stereochemical misassignment has been corrected and the absolute configurations of the natural products have been established as 1–3, respectively.

Enantioselective synthesis of β-amino-diacids

Jeanne Alladoum and Luc Dechoux*

pp 8203-8205

$Cyclopropanation \ of \ 3,4-dihydro-1 \ H-benzo[\it e][1,4] \ diazepine-2,5-diones$

Oliver Lack and Rainer E. Martin*

pp 8207-8211

A correlation study of bisphosphine ligand bite angles with enantioselectivity in Pd-catalyzed asymmetric transformations

pp 8213-8216

Malati Raghunath and Xumu Zhang*

(R)-Cn-Tunephos

bite angle correlates to %ee

n = 1-6

A facile synthesis of fused spiroketal skeleton: 2,2'-spirobi(4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrochroman)

pp 8217-8220

M. Giasuddin Ahmed, * Syeda A. Ahmed, Md. Khabir Uddin, Md. Taifur Rahman,

U. K. R. Romman, Mizue Fujio* and Yoshisuke Tsuda

Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones

pp 8221-8224

Gowravaram Sabitha,* K. Bhaskar Reddy, J. S. Yadav, D. Shailaja* and K. Samba Sivudu

Reaction of O6-methylguanosine with nitrite in the presence of carboxylic acid: synthesis of the purin-2-yl carboxylate

pp 8225-8228

Tokumi Maruyama,* Nobuyasu Moriwaka, Yosuke Demizu and Masami Ohtsuka

NaNO₂ or *i*-Am-ONO

R-COOH

RF(TBS)₃

$$R = CH_3, C_6H_5, -CH - NHBoc$$
 $CH(CH_3)_2$

BiCl₃-mediated opening of epoxides, a facile route to chlorohydrins or amino alcohols: one reagent, two paths

pp 8229-8232

Adam McCluskey,* Sarah K. Leitch, James Garner, Christine E. Caden, Timothy A. Hill, Luke R. Odell and Scott G. Stewart

Oxidant-free oxidation: ruthenium catalysed dehydrogenation of alcohols

pp 8233-8235

Gareth R. A. Adair and Jonathan M. J. Williams*

Ruthenium catalysts were employed for the oxidation of alcohols into ketones without the addition of an oxidant.

Formation of 3,4-dimethyl-2-pyrones from allene carboxylates and 2-silyloxydienes via 3-carboethoxyethylidene cyclobutanols

pp 8237-8240

Michael E. Jung* and Aaron R. Novack

TMSO Tol/2 2) TsOH Tol/2
$$CH_3$$
 CH_3 $CH_$

Base treatment of the cyclobutanols $\bf 4$ (made from $\bf 1$ and $\bf 2$) affords good yields of the substituted 3,4-dimethyl-2-pyrones $\bf 6$.

Synthesis of a new hydrophilic o-nitrobenzyl photocleavable linker suitable for use in chemical proteomics

pp 8241-8244

Andrew M. Piggott and Peter Karuso*

A probe method for studying dibromocarbene by time resolved infrared spectroscopy

pp 8245-8247

George Holinga and Matthew S. Platz*

$$Br$$
 $C=C=N$
 R
 $C=C=N$

Dibromocarbene reacts with *tertiary*-butyl isocyanate to form a ketenimine that is readily monitored by time-resolved IR spectroscopy.

The redox behaviour of cyclic tetraaminoethenes derived from 2,2'-biimidazole

pp 8249-8251

M. Matschke, C. Käpplinger, D. Weiß and R. Beckert*

Effect of iminic nitrogen substituents on [4+2] versus [3+2] cycloaddition pathways in reactions of nitrosoalkenes with simple acyclic imines: an experimental and theoretical investigation

pp 8253-8256

Alka Marwaha, P. V. Bharatam and M. P. Mahajan*

Ph H H H DCM

$$R = aryl$$
 $R = aryl$
 $R = ar$

An indepth experimental and theoretical investigation has been carried out so as to explore the effect of iminic nitrogen substituents in influencing the [4+2] versus [3+2] cycloaddition pathways followed in their reactions with nitrosoalkenes.

OTHER CONTENTS

Contributors to this issue Instructions to contributors

p I pp III-VI

*Corresponding author

** Supplementary data available via ScienceDirect

Full text of this journal is available, on-line from **ScienceDirect**. Visit **www.sciencedirect.com** for more information.

This journal is part of **ContentsDirect**, the *free* alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for **ContentsDirect** online at: http://contentsdirect.elsevier.com

Indexed/Abstracted in: AGRICOLA, Beilstein, BIOSIS Previews, CAB Abstracts, Chemical Abstracts, Chemical Engineering and Biotechnology Abstracts, Current Biotechnology Abstracts, Current Contents: Life Sciences, Current Contents: Physical, Chemical and Earth Sciences, Current Contents Search, Derwent Drug File, Ei Compendex, EMBASE/Excerpta Medica, Medline, PASCAL, Research Alert, Science Citation Index, SciSearch

